Боковое давление грунта на стены подвала - Клуб Мастеров

Боковое давление грунта на стены подвала

Расчет фундамента под наружную стену подвала. Расчет устойчивости основания против сдвига (по 1 предельному состоянию). Пример расчета.

Расчет стены проводится в несколько этапов, в каждом из них проверяется определенное условие, обеспечивающее надежную работу конструкции. Что определяет расчет устойчивости основания против сдвига? На стену воздействуют немалые горизонтальные силы от давящего на нее грунта (в нашем примере такое давление достигает более двух тонн на метр квадратный стены), пытающиеся сдвинуть стену в сторону подвала. Препятствуют этому удерживающие силы: нагрузка на стену подвала (из п. 4 расчета); собственный вес стены подвала и фундамента; пригруз грунта со стороны обратной засыпки (именно поэтому мы стараемся сделать фундамент не симметричным, а большую его часть выдвинуть в сторону обратной засыпки – чтобы получше пригрузить); пригруз обратной засыпкой и конструкцией пола со стороны подвала и пассивное горизонтальное давление от них же. Все эти вертикальные силы придавливают фундамент к земле, возникает сила трения между подошвой и грунтом основания (чем шире подошва, тем больше сила трения – это еще один фактор, который нужно запомнить); и если сила трения больше сдвигающей силы хотя бы в 1,2 раза (коэффициент запаса, учитывающий всякие погрешности), то фундамент не сдвинется и стена будет стоять на нем надежно.

Что означает «по 1 предельному состоянию»? К 1 предельному состоянию относится решение вопроса устойчивости конструкции, его мы и решаем. Конкретно для расчета – это проявляется в выборе повышающих коэффициентов из п. 1.

Итак, первое, что нужно определить – это горизонтальное давление, воздействующее на стену по высоте.

В п. 5.2 и 5.3 мы определяем горизонтальную составляющую интенсивности активного давления грунта – она переменна, вверху равна σг1, а к низу возрастает до σг2. Что это такое, название явно сложное. Грунт засыпки имеет собственный вес (удельный вес грунта γ), и неоднородную, сыпучую структуру, характеризующуюся углом внутреннего трения φ (этот угол определяет способность грунта не рассыпаться под собственным весом, а значит и влияет на степень давления веса грунта на конструкцию стены). Если бы грунт был подобен скале (монолитный и целостный), то его вес давил бы только вниз и на соседствующую стену не воздействовал. А так давление грунта распределяется под углом трения, и в итоге в нем можно выделить вертикальную и горизонтальную составляющую. Чем выше угол трения, тем лучше держит грунт сам себя, и тем меньше его горизонтальное давление и больше вертикальное.

Понятие активного и пассивного давления введено для различия: активное пытается сдвинуть, пассивное – помогает удержать на месте.

Величина горизонтального давления всегда увеличивается с глубиной, она прямо пропорциональна глубине грунта. На уровне поверхности грунта она равна нулю, поэтому σг1 = 0, т.к. в нашем примере поверхность грунта ниже верха стены (если бы грунт был выше верха стены, то вверху стены σг1 имела бы уже какую-то величину).

Помимо влияния собственного веса грунта на стену также оказывает влияние нагрузка на грунте – горизонтальная составляющая давления от нее постоянна по всей глубине, ее мы находим в п. 5.4. В данном примере рассмотрен случай, когда временная нагрузка на грунте распределена равномерно по всей площади. Если у Вас другой случай, то формулу и эпюру надо переработать согласно рисунку 8 руководства.

И последняя величина – это интенсивность горизонтальных сил сцепления грунта засыпки, которую мы находим в п. 5.6. Сила сцепления удерживает грунт – чем больше сцепление грунта, тем меньше его давление на стену, поэтому σсг в формуле 5.7 и 5.8 мы используем со знаком минус. И чем большего сцепления грунта можно добиться при уплотнении обратной засыпки, тем легче будет стене и фундаменту.

В формуле определения интенсивности сил сцепления повышающий коэффициент не используется – обратите внимание на такие случаи. Если мы применим повышающий коэффициент, то тем самым мы уменьшим сдвигающую силу, а ее нам нужно определить максимальной. Повышающие коэффициенты используются только там, где они могут ухудшить условия работы конструкции.

Обратите внимание, что в данном расчете грунт засыпки – это связный грунт, он имеет не нулевое сцепление. Если вы применяете несвязный грунт (песок, шлак и др.), то нужно считать по другим формулам руководства, и эпюры будут другими, т.е. данный расчет уже не подходит.

Далее нам следует суммировать горизонтальные давления, чтобы получить итоговую эпюру.

Вверху значение интенсивности горизонтального давления равно σ1, а внизу – σ2.

Причем, здесь может быть два варианта: σ1 может получиться как с отрицательным, так и с положительным значением. При отрицательном значении итоговая эпюра будет иметь вид треугольника; при положительном – вид трапеции. Соответственно, формулы получатся тоже разные.

В данном примере у нас получился вариант с треугольной эпюрой. Но расчет я постаралась сделать универсальным для обоих случаев, поэтому в данном месте расчет у меня раздвоился, и нужно сделать выбор, по какому из вариантов «а» или «б» считать далее.

Итак, в п. 5.9 мы определили, что расчет будем вести по варианту «а».

В этом варианте, когда мы суммируем все три эпюры (с учетом знаков: первые две действуют в одну сторону, третья – в противоположную), получается итоговая треугольная эпюра давления, наглядно показывающая, на какой высоте (Н1) и с какой силой воздействует на стену активное горизонтальное давление. Обратите внимание, что если графически построить эпюры пропорционально значениям, получившимся в формулах, то все результаты на рисунке и в расчете сойдутся – такая самопроверка никогда не помешает.

Найдя горизонтальное давление грунта σ2 на уровне низа подошвы, мы с его помощью определяем сдвигающую силу Тсд, что и сделано в п. 5.10а.

Статья по теме:  Сколько стоит заштукатурить 1 кв метр стены

Вариант «б» (пункт 5.10б) для данного примера не актуален, но я приведу его на рисунке ниже, вдруг ваш расчет пойдет по другому пути (пример итоговой эпюры для варианта «б» я не привожу).

И следующим этапом будет определение всех возможных удерживающих сил, действующих на фундамент: собственный вес фундамента, стены и грунта обратной засыпки, опирающегося на подошву фундамента с двух сторон, собственный вес конструкции пола и нагрузка на стену фундамента от конструкций здания. Временные нагрузки в этом расчете не участвуют, т.к. без них ситуация хуже, чем с ними.

Все эти силы, кроме Р5, имеют площадь сбора нагрузки, что мы наглядно видим из рисунка выше. Суммируя все силы, мы получаем N (п. 5.16).

Также необходимо найти пассивное горизонтальное давление грунта Еп – это давление части грунта, находящейся под уровнем пола подвала (справа от стены и фундамента) и удерживающей фундамент от сдвига. Пассивное давление зависит от веса грунта, его сцепления и угла внутреннего трения – обратите внимание, их значения берутся для расчета по 1 предельному состоянию. Полы в данном случае условно игнорируются, и их толщина при расчете пассивного давления грунта исключается.

После этого в п. 5.18 определяется удерживающая сила Туд.

Обратите внимание, для стены подвала без сложных геологических условий выполняется проверка только при β = 0. Иначе расчет нужно выполнять согласно примечанию к п. 8.13 руководства.

Последним шагом является проверка – сравнение сдвигающей и удерживающей сил. Если первая меньше второй хотя бы в 1,2 раза, то условие обеспечено, и можно переходить к следующему этапу расчета.

Что делать, если условие не обеспечено? Можно выполнить следующие мероприятия:

— увеличение ширины подошвы в сторону улицы – этим мы добавляем дополнительный пригруз от веса грунта засыпки, а также вес самой подошвы;

— увеличение ширины подошвы в сторону дома – эффект от него меньше, чем от первого, но все же есть, т.к. с увеличением площади фундамента возрастает сила трения, препятствующая сдвигу;

— увеличить собственный вес конструкций фундамента и стены за счет их толщины – иногда (если не хватает совсем немного) это рациональней, чем копать более широкую траншею;

— заменить обратную засыпку на грунт с большим углом внутреннего трения (песок, шлак).

Не забывайте, положительные факторы в этом расчете – это любая вертикальная нагрузка; ширина подошвы фундамента (чем больше, тем лучше); большой угол трения грунта засыпки со стороны улицы. Отрицательные факторы: глубина подвала, точнее высота грунта засыпки со стороны улицы (чем она больше, тем больше сдвигающая сила); маленькая толщина засыпки со стороны подвала (эта засыпка препятствует сдвигу, иногда стоит ее увеличить немого, подняв пол подвала, чтобы условия по сдвигу удовлетворялись); небольшая нагрузка на стену подвала (чем больше пригруз, тем больше сила трения и сопротивление сдвигу).

В обычных случаях все проблемы можно решить увеличением ширины подошвы фундамента. Но если этого не достаточно, возможно проведение дополнительных мероприятий, например устройство распорок между стенами подвала, которые будут препятствовать сдвигу. Естественно, распорки должны быть рассчитаны на действие сдвигающей силы и установлены с определенным шагом. Если в доме часто стоят несущие поперечные стены, нужно проводить анализ о возможности сдвига фундамента – в некоторых случаях можно пропускать эту часть расчета.

Задача №4. Определение давления грунта на подпорную стенку

3.4.1. Определение давления на подпорную стенку
от идеально сыпучего грунта

Общее выражение для определения давления сыпучих грунтов имеет следующий вид:

, (3.4.1)

где — расстояние точки от поверхности засыпки.

Максимальное активное давление грунта на вертикальную гладкую стенку при z=H:

. (3.4.2)

Эпюра распределения давления по граням стенки будет треугольной. Равнодействующая активного давления на подпорную стенку равна площади эпюры давления:

. (3.4.3)

Максимальное пассивное давление грунта на заднюю грань вертикальной стены при z= :

. (3.4.4)

Равнодействующая пассивного давления:

. (3.4.5)

Пример расчета

Высота стенки H=6 м.

Высота заглубления стенки h / =1,5 м.

Угол внутреннего трения грунта φ=16 0 .

Удельный вес грунта γ=22 кН/м 3

Активное давление грунта на подпорную стенку:

Равнодействующая активного давления:

225 кН/м.

Пассивное давление грунта на подпорную стенку:

Равнодействующая пассивного давления:

43,58 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.1).

При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.1. Расчетная схема подпорной стены

Определение давления на подпорную стенку от идеально сыпучего грунта с учетом пригруза на поверхности грунта

Действие сплошнго равномерно распределенного пригруза в этом случае заменяется эквивалентной высотой слоя грунта, равной:

. (3.4.6)

Активное давление на уровне верха подпорной стенки:

. (3.4.7)

Активное давление на подошве подпорной стенки:

. (3.4.8)

Равнодействующая активного давления:

. (3.4.9)

Пример расчета

Высота стенки H=6 м.

Высота заглубления стенки h / =1,5 м.

Угол внутреннего трения грунта φ=16 0 .

Удельный вес грунта γ=22 кН/м 3 .

Интенсивность пригрузки

Эквивалентная высота слоя грунта:

2,27м.

Активное давление на уровне верха подпорной стенки:

28,36кПа.

Активное давление на подошве подпорной стенки:

103,33 кПа.

Равнодействующая активного давления:

395,07 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.2).

При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.2. Расчетная схема подпорной стены с пригрузом

Определение давления на подпорную стенку от связного грунта

Действие сил сцепления заменяется всесторонним давлением связности:

. (3.4.10)

Далее приводим давление связности по вертикали к эквивалентному слою грунта:

. (3.4.11)

Активное давление на подошве подпорной стенки:

(3.4.12)

Подставляя значения и преобразовывая, получаем:

. (3.4.13)

На некоторой глубине суммарное давление будет равно нулю, из условия находим высоту hс:

Статья по теме:  Нужно ли штукатурить стены перед укладкой плитки

. (3.4.14)

Равнодействующая активного давления:

. (3.4.15)

Равнодействующая пассивного давления в связных грунта будет равна:

. (3.4.16)

Пример расчета

Высота стенки H=6 м.

Высота заглубления стенки h / =1,5 м.

Угол внутреннего трения грунта φ=21 0 .

Удельное сцепление грунта с=18 кПа.

Удельный вес грунта γ=22 кН/м 3 .

Действие сил сцепления заменяем всесторонним давлением связности:

46,88 кПа.

Далее приводим вертикальное давление связности к эквивалентному слою грунта:

2,13м.

Активное давление на подошве подпорной стенки:

38,0 кПа.

2,37 м.

Равнодействующая активного давления:

68,97 кН/м.

Равнодействующая пассивного давления:

131,59 кН/м.

По полученным данным строим расчетную схему и эпюру напряжений (рис.3.4.3). При построении расчетной схемы и эпюр активного и пассивного давлений грунта на подпорную стенку следует принимать масштаб расстояний 1:50, масштаб давлений 0,025 МПа в 1 см.

Рис.3.4.3. Расчетная схема подпорной стены

50. Моделирование бокового давления грунта на стены подвала в ПК ЛИРА 10.6

Внешние стены подвалов рассчитывают на нагрузки, которые передаются наземными конструкциями, а также на давление грунта с временной расчетной равномерно распределенной нагрузкой на поверхности земли.

Усилия в стенах подвалов, опертых на перекрытие, от бокового давления грунта, вызванного его собственным весом и временной нагрузкой, определяются как для балочных плит на двух опорах с защемлением на уровне сопряжения с фундаментом, шарнирной опорой в уровне опирания перекрытия и с учетом возможного перераспределения усилий от поворота (крена) фундамента и смещения стен при загружении территории, прилегающей к подвалу, временной нагрузкой с одной его стороны.

Рис. 1. Общий вид стены подвала

Согласно пункту 8.9 [1], расчетная схема стен подвалов выглядит следующим образом:

Рис. 2. Расчетная схема стены подвала

Рассмотрим модель стен подвала в ПК ЛИРА 10.6. Высота стен подвала – 3,5 метра, толщина – 0,3 метра. Высота засыпки – 3 м. Материал стен – бетон B15. Арматура – А400. Снизу стена подвала жестко защемлена, сверху закреплена от перемещений в горизонтальной плоскости.

Рис. 3. Модель стен подвала в ПК ЛИРА 10.6

На стены задана вертикальная нагрузка от вышерасположенных конструкций, нагрузка от собственного веса. Вертикальная нагрузка на поверхность земли преобразована в боковое давление на стену подвала. Чтобы задать нагрузку от бокового давления грунта с нагрузкой на поверхность земли, в библиотеке нагрузок выбираем «Трапециевидную нагрузку на группу» (рис. 4).

Рис. 4. Панель активного режима «Назначить нагрузки»

Указываем тип элементов – пластины. Выбираем систему координат и направление изменения нагрузки. Указываем величину нагрузки, выбираем необходимые элементы стен подвала и нажимаем кнопку «Назначить» (рис. 5).

Рис. 5. Диалоговое окно «Трапециевидная нагрузка на группу»

Рис. 6. Нагрузка от бокового давления грунта

После проведения расчета можно посмотреть результаты по перемещениям (рис. 7), усилиям (рис. 8) и армированию (рис. 9).

Рис. 7. Перемещение узлов расчетной схемы по оси Х

Рис. 8. Изгибающий момент Mx

В нашей задаче в качестве продольной арматуры на один погонный метр стены требуется установить арматуру восьмого диаметра с шагом 500 (рис. 9).

Рис. 9 – Продольное армирование железобетонных стен подвала

Таким образом в ПК ЛИРА 10.6 реализована возможность расчета стен подвалов.

Список использованных источников и литературы

Руководство по проектированию подпорных стен и стен подвалов для промышленного и гражданского строительства / ЦНИИПромзданий Госстроя СССР. — М.: Стройиздат, 1984. – 117 c.

Боковое давление грунта на стены подвала

Нормативная и справочная литература:

[1] СП 20.13330.2011, п.9.17-9.23 (НИИОСП)
[2] ВСН 136-78, прил. 11 (МинТрансСтрой)
[3] СП 43.13330.2012, прил.В (ЦНИИПромзданий)
[4] Руководство по проектированию подпорных стен и стен подвалов (ЦНИИПромзданий, НИИОСП) 84 г.
[5] Основания, фундаменты и подземные сооружения (Справочник проектировщика), глава 7 (Снарский, НИИОСП) 85 г.
[6] СП 101.13330.2012 прил.М (Гидропроект, Гипроречтранс)

В общем, просмотрел указанную литературу (кроме СП101) на предмет поиска примера где были бы учтены сцепление и нагрузка на поверхность. Такие примеры нашлись в «Руководстве» [4]:
— пример 7 (массивная стена подвала) — в примере давление сцепления превышает давление от нагрузки, этим пример интересен в первую очередь;
— пример 8 (тонкостенная стена подвала) — в примере давление сцепления меньше давления от нагрузки;

Если смотреть на то, как изображаются эпюры (в аспекте разделения эпюры на две части), то мне примеры из руководства не нравятся т.к. считаю более корректным изображение, когда ближе к стенке изображается давление от веса грунта, а поверх его давление от нагрузки (как в СП43 рис. В.1.г). Такое расположение ближе к реальности, поскольку давление от веса грунта имеется всегда, а давление от нагрузки появляется впоследствии и добавляется к нагрузке от веса грунта.

Здешний расчет с данными примера 7 (результат сходится): http://webcad.pro/tmp/podpor_564359398.pdf

Здешний расчет с данными примера 8 (в целом сходится, но в примере имеется ошибка на стр.93: ошибочно использовано k=1.35, а должно быть 1.42): http://webcad.pro/tmp/podpor_975027552.pdf

Финт с «натягиванием точки» в явном виде нигде кроме СП43 не используется (если только косвенно — путем неучета сцепления, в подобном случае влияние еще более значимо, поскольку прибавка давления возникает не только в верхней и средней частях эпюры, а по всей ее высоте). Однако, в связи с тем, что в СП43 такой прецедент имеется, можно его учесть как отдельную опцию, но возникает вопрос как в этом случае разделять эпюру на две части? Если обратиться к рисунку из предыдущего сообщения, вопрос будет звучать следующим образом. К какой из эпюр прибавлять синюю добавку: к желтой или пурпурной? Или как-то делить ее между ними?

В целом вывод таков, что текущий вариант в рамках принятых предпосылок и допущений корректен и при необходимости может быть дополнен возможностью учета особенностей указанных в СП43. Возможно, следует переработать формулы, таким образом, что бы явным образом показывать «давление сцепления» и изобразить его на эпюрах.

Статья по теме:  Как установить кабель канал на стене

#11 2018-12-29 20:20:46

Re: [НиВ] Расчет бокового давления грунта

Отмечу еще один источник:

[7] Расчет подпорных стенок. 1964г. (Клейн)

В данном издании подробно освещены различные вопросы из области расчета подпорных стен и определения бокового давления. По части учета сцепления имеется параграф 23 «Учет сцепления в грунте» содержащий пример 11. Характер соответствующих эпюр — треугольные с наличием вертикального откоса без давления. Однако результаты из примера 11 не сходятся со здешним расчетом поскольку автор производит расчет по более точной и сложной методике, которая дает пониженные значения бокового давления по сравнению с методикой использованной в здешних расчетах (СП22).

#12 2018-12-30 16:52:17

Re: [НиВ] Расчет бокового давления грунта

Здравствуйте!
Картинка почему-то отображается не корректно https://yadi.sk/d/XyyBp3QPNhs0Tg

#13 2018-12-30 19:46:04

Re: [НиВ] Расчет бокового давления грунта

Добрый день. Все нормально — это такая картинка)) Расчет в процессе изготовления.

#14 2018-12-31 12:22:49

Re: [НиВ] Расчет бокового давления грунта

Обнаружил, что в Справочнике проектировщика [5] имеется пример 6.3 аналогичный примеру 7 из Руководства [4].

#15 2019-01-03 00:39:29

Re: [НиВ] Расчет бокового давления грунта

Что касается коэффициентов надежности по нагрузке ситуация выглядит немного противоречиво.

С одной стороны п.9.19 СП22 предписывает:

9.19 При определении величин бокового давления грунта на ограждения котлованов и конструкции подземных частей сооружений для выполнения расчетов по первой группе предельных состояний следует использовать значения прочностных характеристик грунтов $phi_I$, $c_I$ (либо $c_$), а для выполнения расчетов по второй группе предельных состояний — $phi_$, $c_$ (либо $c_$). В обоих случаях коэффициент надежности по нагрузке для удельного веса грунта должен приниматься $gamma_=1.0$.

С другой, в руководстве [4] повсеместно используется коэффициент надежности по нагрузке для собственного веса грунта равный 1.1 и соответствующий коэффициент для нагрузки на поверхности равный 1.2.

В общем сделал возможность учета двумя коэффициентами подобно подходу использованному в руководстве [4]. При этом значение объемного веса и нагрузки умножаются на соответствующие коэффициенты сразу в исходных данных и в дальнейших выкладках используются уже «расчетные» значения. На первый взгляд все должно быть корректным, если ошибаюсь — поправьте.

#16 2019-01-09 11:40:27

Re: [НиВ] Расчет бокового давления грунта

Сколько много информации здесь появилось за время праздников)
по поводу эпюр: базовая формула давления грунта — Ϭ=Ка*(ɣ*z+q)-2*c*√Ка. Предлагаю разбить её на три составляющие: Ϭ=Ка*ɣ*z + Ка*q — 2*c*√Ка. Рисовать также три эпюры Pɣ, Pq, -Pс и четвертую — суммарную. Нажав на кнопочку «сооружение промышленных предприятий» в исходных данных, к суммарной эпюре добавлялся бы финт с наращиванием эпюры. Только страшно представить как это сделать технически..
по поводу коэффициентов: думаю возможность введение коэффициентов больше 1 — это хорошо (мы обычно берем 1,15; СП43 по п.В.20 рекомендует брать его по СП20 и СП35). Вот только немного непривычно выглядит умножение на этот коэффициент в исходных данных. Мне кажется правильнее умножать на него в самих формулах (ведь это коэффициент надежности по нагрузке, а не по объемному весу грунта).
А формулу для определения вертикального откоса hс вы сами вывели?

Last edited by Dizel (2019-01-09 11:42:56)

#17 2019-01-11 23:40:12

Re: [НиВ] Расчет бокового давления грунта

>Dizel
Извиняюсь за запоздалый ответ, напряженные послепраздничные дни.

Про разбивку на три эпюры и четвертую суммарную, вообще говоря, не согласен, поскольку идея разбивки эпюр была в том, что бы можно было использовать по отдельности давление от веса грунта и давление от нагрузки. А когда мы рисуем три эпюры (и четвертую сумму) у нас нет по отдельности этих двух компонентов. Поэтому я сам с собою рассуждал так: если за основу вычисления напряжений принять формулу с тремя компонентами (кстати, так сделано и в руководстве [4] и в справочнике [5]), то изображать это целесообразно одной суммарной эпюрой где было бы видно как произошло геометрическое суммирование (т.е. как на рисунке Г из СП43), а рядом две(!) эпюры от собств. веса и нагрузки.

Про возможность учета финта (СП43) как опции расчета уже писал и там же задавался вопросом как делить полученную эпюру на две части? Первое, что приходит в голову — это проводить линию параллельную новой суммарной огибающей — см. рис. Впрочем результат выглядит все равно оригинально.

Про коэффициенты: согласен, что лучше прописать все коэффициенты в формулы, но пока идет «брожение» делать этого не хочу, пусть побудет пока так. Моя реплика, про «корректность» имела ввиду корректный окончательный результат, а не ситуацию в целом. А как вы относитесь с процитированному п.9.19 из СП22? Вроде бы ясно сказано — упомянуты ограждения котлованов и подземные части сооружений — остаются подпорные стенки к которым это не относится.

Формула для определения величины вертикального откоса есть в литературе, но и вывести ее проще простого (хотя бы для самопроверки) — вместо сигмы в формуле из СП подставляется ноль, а на место z ставится h_c

В целом пока резюме таково, что предлагаемый подход (деление эпюры на части и формулы из трех компонентов) предполагает практически полную переделку того, что имеется сейчас. В целом соглашаясь, что такая переделка улучшит расчет, тем не менее пока браться за нее не хочу, ибо свободного времени не в избытке. Поэтому, думаю для начала закрыть все оставшиеся вопросы, что бы можно было расчетом пользоваться, а лоск наводить уже следующим этапом.

Стало быть, надо разобраться с вопросами: 1) о вертикальной составляющей при наличии трения или наклона стенки; 2) о направлении равнодействующей давления в случае давления покоя при наличии наклона поверхности (как к этому относиться).

Ссылка на основную публикацию
Adblock
detector