Как сделать расчет фундамента на опрокидывание

Как делается расчет фундамента для дома?

Методика расчета основания фундамента или плиты дома имеет определенную последовательность.

Плитный фундамент для дома

Сначала определяется тип конструкции, затем — параметры основания и объем, затраченных на него материалов, пропорции материалов, количество цемента, песка, и щебня для фундамента. Для проведения расчетов мы подготовили специальный калькулятор. Но перед его использованием советуем ознакомится с методиками и нюансами расчетов фундамента разных типов.

Определение типа фундамента для дома

Чтобы правильно выполнить расчет фундамента, нужно учесть такие параметры:

  • тип почвы;
  • глубину залегания подземных вод;
  • толщину промерзания грунта;
  • вес в зависимости от того, сколько было использовано материалов (газобетона, дерева, железобетонных конструкций).

Для определения несущей способности почвы, нужно знать ее тип, степень плотности и увлажненности.

Методы

В домашних условиях надо выявить показатели несущей способности грунта при помощи колышка.

Если он входит в грунт только при помощи лома, перед застройщиком почва с высоким показателем несущей способности, если почва снимается легко без инструмента вручную, перед застройщиком – рыхлый массив с низкими показателями несущей способности.

Блочный фундамент для дома

Чтобы определить влажность почвы, достаточно растереть ее комок в руке. Если соотношение влаги к сухим компонентам высокое, то она скатается, если низкое, то она рассыплется.

Если объема влаги в грунтовом массиве слишком много, то зимой на фундамент будут воздействовать силы пучения.

Пластичность грунта определяется на глаз: если его комки остаются на лопате, значит он пластичный. Показатели его несущей способности низкие, и он склонен к усадке.

Чтобы осуществить сбор нагрузок на фундамент, нужно посчитать, сколько весит дом, то есть суммировать массу всех использованных материалов.

Для этого необходимо учесть такие параметры:

  1. Общий вес, а также объем конструкции (масса материалов).
  2. Нагрузку от эксплуатации (количество жильцов, мебель).
  3. Атмосферные нагрузки (осадки, ветер).

Расчет на опрокидывание и продавливание фундамента

При обустройстве ленточного фундамента в обязательном порядке необходимо провести расчет на опрокидывание. Угроза его появления существует при возведении малогабаритного, легкого дома. Опрокидывание также возможно при обустройстве фундамента мелкого заложения.

Чтобы рассчитать нагрузку на фундамент со стороны стихии на опрокидывание, необходимо использовать формулу: Mu≤(ус/уn)Мz, в которой:

  • Mu – опрокидывание сил по отношению к оси опрокидывания основания мелкого заложения, который проходит по крайним точкам опирания;
  • Mz – момент сдерживающих сил относительно указанной оси;
  • Yc – коэффициент условий работы (для скальных грунтов – 0.9, для нескальных грунтов – 0.8);
  • Yn – коэффициент надежности (1.1 – на стадии эксплуатации, 1.0 – на стадии строительства).

Расчет на продавливание используется для выявления безопасности монолитной конструкции. Он выполняется при наличии сосредоточенной силы (колоны, сваи и т.д.).

Если продавливание слишком высокое, это может привести к разрушению материалов плоть до арматурного пояса. В этом случае необходимо компенсировать продавливание наращиванием толщины монолитного перекрытия.

Продавливание рассчитывается по формуле: F≤αRbtumho, в которой:

  • F – указывает на продавливание;
  • Α – коэффициент, исчисляемый для разных типов бетона: тяжелого – 1, мелкозернистого – 0.85, легкого – 0.8;
  • Um – среднеарифметическое значение периметров оснований пирамиды, которая возникает, когда на плиту действует продавливание в пределах рабочей высоты сечения.

Продавливание исчисляется, при наличии опирания монолитной конструкции на колону, стойку, сваю, при обустройстве плитного и опорно-столбчатого фундамента.

На продавливание нужно проверять только плитные конструкции. Ростверки в свайных фундаментах проверять на продавливание не нужно.

Расчет ленточного фундамента

Ленточный фундамент используется при возведении построек с большой массой стен и бетонными перекрытиями. Он эффективен на пластичных грунтах с высокой угрозой проседания. Применяться ленточный фундамент может на участках с высоким залеганием грунтовых вод.

Выбрав ленточный фундамент в качестве основания, нужно рассчитать кубатуру фундамента, его пропорции, глубину и ширину. Это основные показатели несущей способности железобетонной ленты.

Устройство ленточного фундамента

Для определения глубины заложения фундамента под тяжелые, двух этажные здания, нужно прибавить 30-60 см и толщину промерзания почвы зимой. Заборы и легкие дома из дерева или газобетона могут обойтись основанием с глубиной мелкого заложения, не более 50 см. Ширина ленты стандартная и, как правило, она составляет 40 см.

Чтобы правильно сделать расчет фундамента ленточного типа, его пропорции, необходимо определить площадь его основания, которая будет указывать на параметры несущей способности. С этой целью используется формула: S > k (n)*F/k©*R, где:

  • k (n) – коэффициент надежности площади;
  • F – суммарная нагрузка на грунтовый массив. Сюда входит общая, эксплуатационная и атмосферная нагрузка;
  • k© – коэффициент условий работы (для глины пластичной и сооружений жесткой конструкции равен 1, для крупного песка и не жестких конструкций равен 1.4);
  • R – расчетное сопротивление грунта (показатели несущей способности, которые есть в таблице СНиПа).

Чтобы правильно рассчитать, сколько необходимо бетона для заливки ленточного основания, необходимо воспользоваться формулой V = 2ab x (c+d), в которой

  • а – ширина ленты;
  • b – высота;
  • с – длина стены по внешней стороне фундамента;
  • d – длина по внутренней плоскости.

Соотношение количества цемента, песка и воды для приготовления бетона для ленточного основания зависит от марки бетона. Например, чтобы получить нужный объем бетона марки М250, нужно смешать цемент М400 с песком и щебнем в пропорции 1:2.1:3.9.

Из десяти литров цемента должен получиться объем 43 литра бетона М250 для ленточного фундамента. Чем гуще пропорция бетона, чем выше показатели его несущей способности.

Статья по теме:  Фундамент под баню из бруса

Расчет плитного фундамента

Перед тем, как рассчитать фундамент плитного типа, необходимо правильно определить толщину плиты и глубину ее заложения.

Это универсальный вариант основания, который эффективен на неустойчивых, сильно пучинистых грунтах.

Подходит для дома из газобетона и тяжелых материалов, так как обладает повышенной несущей возможностью.

Для легких одноэтажных зданий из газобетона подойдет плита минимальной толщины 100 мм. В загородном частном строительстве используется плита для заливки в 200-250 мм. Толщина 250 мм удобна для армирования и заливки бетона.

Плита может быть мелкого или глубокого заложения. Наибольшее распространение получила плита мелкого заложения на 40-50 см. Фундамент глубокого заложения применяется для обустройства подвалов под домом из газобетона. Плита, в таком случае, ложиться на почву ниже уровня ее промерзания.

Объем бетона под плитный фундамент дома из газобетона или другого материала рассчитывается по формуле: V = xcb, в которой:

  • x ― длина одной стороны;
  • c ― другой;
  • b ― высота.

Для плитного основания лучше использовать бетон не ниже марки М300. Соотношение количества цемента с песком и щебнем должно составлять 1:1.9:3.7. При этом объем щебня с песком на 10 л цемента будет равен 32:17. А общий объем бетона из 10 л цемента получится 41 л.

Расчет фундамента для дома (видео)

Расчет свайного фундамента

Основой свайного фундамента являются столбчатые опоры. Чтобы определить их диаметр, необходимо выполнить расчет нагрузки на фундамент, то есть вес здания, как было упомянуто выше. Для дома из газобетона, бруса или каркаса оптимально подойдут сваи диаметром 108 мм.

Длина сваи определяется по глубине залегания твердых пород грунта. Если дом строится на глине или песке, достаточно 2.5 м длины.

Если под плодородным слоем почвы расположились рыхлые грунты, нужно сверлить скважину до достижения более плотной почвы. В случае неровности участка, к каждой длине сваи необходимо прибавить еще по 0.5 м.

Количество опор определяется весом дома из газобетона, кирпича или бруса. Чтобы определить, сколько их потребуется, можно воспользоваться упрощенной схемой определения расстояния между сваями, а затем просто поделить это число на длину стены:

  • для деревянный домов – 3 м;
  • для домов из газобетона – 2 м;
  • для заборов – 3.5 м.

Свайные столбы соединяются между собой железобетонным ростверком. Рекомендуется применять ленты высотой 30 см и шириной – 40 см. Можно использовать готовые столбы или залить их самостоятельно.

Чтобы посчитать объем расхода раствора, необходимо воспользоваться формулой: V = (3,14 × d2 / 4) х h, в которой:

  • h ― высота опоры;
  • d ― её диаметр.

Для заливки столбчатого основания для стен из газобетона или других материалов используется бетон марки М 300 и М400. Согласно строительным нормам соотношение пропорции цемента с песком и щебнем для М 400 будет равным 1:1.2:2.7.

При этом соотношение пропорции щебня с песком на 10 л цемента в объемном составе будет отвечать 24:11 л. Полученное количество раствора на 10 л цемента составляет объем 31л.

§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига

Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.


Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания

При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.

Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz — моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус — коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях — 0,8; уn — коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.

Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.

Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf где µ — коэффициент трения фундамента по грунту.

Статья по теме:  Сделать фундамент на воде

В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.

Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).

В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.

Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.

При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:

Фундаменты и расчет закрепления опор в грунте

В понятие закрепления опор в грунте входит совокупность инженерных мероприятий по выбору конструкции подземной части опор, обеспечивающих требуемую надежность их работы в процессе эксплуатации ВЛ.

Фундаментом опоры называется конструкция, заделанная в грунт и передающая на него нагрузки от опоры, изоляторов, проводов и внешних воздействий. Конструкции фундаментов выбираются в соответствии с типом опоры, действующей на фундамент нагрузкой и характеристикой грунта. Одностоечные опоры, у которых нижний конец стойки на 2 — 3,5 м заделывается в грунт, устанавливаются без фундаментов: фундаментом является низ стойки. Металлические опоры и железобетонные опоры с оттяжками устанавливаются на фундаменты, которые бывают монолитные бетонные или железобетонные заводского изготовления или сборные. Первые применяются только в слабых обводненных грунтах.

Область грунта, воспринимающая давление от фундамента, называется основанием. Расстояние от подошвы фундамента до поверхности грунта в месте его установки называется глубиной заложения фундамента. Глубина заложения фундамента зависит от плотности грунта и глубины его промерзания. Кроме того, учитываются нарушения структуры грунта: так грунт при засыпке котлованов – грунт с нарушенной структурой – имеет гораздо меньшую прочность, чем грунт нетронутый разработками, т.е. грунт с ненарушенной структурой. Особенно тщательно анализируются характеристики грунтов основания фундаментов. Строительными нормами и правилами (СНиП) все грунты разделены на 39 групп, которые в зависимости от трудности разработки отнесены к той или иной категории. Самую высокую, XI категорию, имеют кремнистые сланцы, самую низкую, I категорию, грунт растительного слоя без корней. Грунт, служащий основанием для фундамента, представляет собой раздробленное тело и в общем случае состоит из трех элементов: минеральных частиц, воды и воздуха.

Основными физическими характеристиками грунта являются удельный вес — вес единицы объема минеральных частиц при отсутствии пор между ними; объемный вес — вес единицы объема грунта в условиях естественного природного залегания и весовая влажность – отношение веса воды, находящейся в порах грунта к весу грунта в абсолютно сухом состоянии.

Различают влажность на границе текучести WL , при незначительном увеличении которой грунт переходит в текучее состояние, и влажность на границе раскатывания WР , при незначительном уменьшении которой грунт переходит в полутвердое состояние. Обозначим через W природную весовую влажность грунта. Соотношение , называемое показателем консистенции глинистых грунтов, является важнейшей характеристикой, позволяющей точно определить основные механические характеристики, необходимые для расчета оснований фундаментов.

Так, грунты с являются достаточно хорошим естественным основанием для фундамента, а для грунтов с требуются специальные меры и средства для надежного закрепления в них опор.

Основной характеристикой песчаных грунтов является коэффициент пористости, определяемый как отношение

,

где Vпор – объем пор в грунте, Vскел – объем минеральных частиц грунта. Коэффициент пористости изменяется в пределах 0,45-0,75, и чем выше его значение, тем более слабым, рыхлым является грунт, что также требует специальных средств для надежного закрепления опор.

Важнейшими нормативными характеристиками грунтов являются: угол внутреннего трения , удельное сцепление С Н и модуль деформации Е, характеризующие прочность грунта, или его деформативность под нагрузкой. Эти характеристики определены в лабораторных условиях для различных типов грунтов и приведены в приложении М.

Рассмотрим типовые методики расчета закрепления в грунте железобетонных и металлических опор.

9.1 Расчет закрепления свободностоящих железобетонных опор

без специальных фундаментов

Установка стоек опор выполняется в котловане, образованном буровой машиной, диаметр бура которых на 5–7 см превышает диаметр стойки, с засыпкой и плотной трамбовкой пазух между стенками котлована и поверхностью стойки. Такая установка применяется для ненарушенных грунтов, обладающих достаточно высокими механическими характеристиками (рис. 9.1а). Для усиления заделки при слабом или нарушенном грунте применяют дополнительно один (рис. 9.1б) или два ригеля, закрепляемых на стойке в верхней части котлована. Ригель размещается в специально выполненной узкой щели и, как стойка, опирается на грунт с ненарушенной структурой. При наличии грунтовых вод, сыпучих песков или грунта с большим содержанием гальки и валунов образовать котлован буровой машиной не удается, и его вскрывают экскаватором (рис. 9.1в). Тогда опора закрепляется в засыпном грунте, т.е. грунте с нарушенной структурой, имеющем сниженные механические характеристики. Здесь для усиления заделки опор ригели устанавливаются и в нижней части стойки. Если под слоем сухого грунта находится обводненный грунт, то заглубление нецелесообразно, в таких случаях глубину заделки компенсируют устройством насыпной банкетки соответствующей высоты (рис. 9.1г). Опоры анкерно-углового типа также устанавливают непосредственно в грунт в наклонные или прямые котлованы.

Статья по теме:  Минимальная и рекомендуемая высота цоколя

Расчет оснований фундаментов представляет собой проверку опоры на опрокидывание горизонтальными силами и моментами, действующими в вертикальных плоскостях. В основе расчета лежит метод предельных состояний, согласно которому задача расчета закрепления одностоечных опор сводится к определению:

1) устойчивости (несущей способности) под действием расчетных нагрузок;

2) деформации стойки в заделке под действием нормативных нагрузок.

За предельное состояние оснований опор принято такое состояние, при котором обеспечивается их работа. При дальнейшем увеличении внешних нагрузок они перестают удовлетворять требованиям прочности.

Условием устойчивого закрепления опоры в грунте по несущей способности является

, (9.1)

где kН – коэффициент надежности, задаваемый в зависимости от типа опор (для промежуточных опор kН = 1 [4, с.264]); mЗ – коэффициент условий работы закрепления, зависящий от вида грунта (песчаный, глинистый), его консистенции и типа закрепления (с нарушенной или ненарушенной структурой грунта); Q П – предельная горизонтальная нагрузка, приложенная к опоре, определяемая расчетным путем; Q Р – расчетная горизонтальная сила, действующая на стойку, определяемая в результате расчета опоры.

Значения нагрузок Q П и Q Р определяются как силы, приложенные к опоре на высоте , где М Р – расчетный изгибающий момент, определяемый как горизонтальными, так и вертикальными нагрузками на опору. Горизонтальные – это ветровые нагрузки на опору, провода и тросы, вертикальные обусловлены собственным весом опоры, весом проводов, тросов, гирлянд изоляторов, арматуры. Соответственно, расчетный момент М Р является суммой моментов всех сил и нагрузок. Расчет поперечной нагрузки Q осуществляется методом последовательных приближений при совместном решении уравнения равновесия проекций всех сил на вертикальную и горизонтальную оси опоры и уравнения моментов всех сил относительно центра тяжести эпюры давления грунта в нижней части опоры. Расчет достаточно сложен, поскольку в качестве исходных данных содержит, кроме характеристик опоры, проводов, тросов, районов по ветру и гололеду, физические характеристики грунтов, обуславливающие силы сцепления поверхности грунта с материалом стойки опоры.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8664 — | 7436 — или читать все.

Сдвиг фундаментов по подошве и расчет на опрокидывание.

Эти виды деформации могут произойти при действии горизонтальных нагрузок.

При недопустимости отрыва части подошвы от основания, когда равнодействующая проходит внутри ядра сечения подошвы фундамента, опрокидывание невозможно, поэтому проверку на опрокидывание не проводят.

Устойчивость фундамента на сдвиг по подошве рассчитывается по 1-ой группе предельных состояний. Такой сдвиг называется плоским сдвигом фундамента.

(1.1)

где F – расчетная сила, передаваемого на основание от основного и особого сочетания нагрузок;

— коэффициент условий работы, зависящий от вида грунта; = 0,8 — 1;

Fu – сила предельного сопротивления основания;

– коэффициент надежности в зависимости от класса сооружения; = 1,1 -1,2.

(1.2)

где – вертикальная составляющая внешней нагрузки, кН;

– вес фундамента и грунта на его уступах;

f – коэффициент трения кладки фундамента по грунту основания.

Расчет фундаментов производят в зависимости от расчетной схемы, исходя из следующих условий:

— осадки здания или сооружения (в том числе разность между осадками отдельных их частей) не должны превосходить предельно допустимых величин, для чего фундаменты рассчитывают по деформациям грунта основания;

— напряжения в грунтах основания не должны превосходить расчетного сопротивления грунта основания, исходя из чего определяют размеры площади подошвы фундамента;

— напряжения в материале фундамента не должны вызывать его повреждения, для чего проводят расчет прочности материалов фундамента;

— под действием горизонтальных сил моментов фундамент может потерять устойчивость положения (сдвинуться по направлению действия горизонтальных сил или опрокинуться по направлению действия моментов). Для предупреждения этих явлений иногда проводят расчеты на устойчивость против скольжения и опрокидывания.

Основные принципы проектирования оснований и фундаментов:

— проектирование оснований сооружений по предельным состояниям;

— учет совместной работы системы: основание – фундамент — несущие конструкции сооружения;

— комплексный учет факторов при выборе типа фундаментов и оценке работы грунтов основания в результате совместного рассмотрения:

1) инженерно – геологических условий площади строительства;

2) особенностей сооружений и чувствительности его несущих конструкций к развитию неравномерных осадок;

3) метода выполнения работ по устройству фундаментов и подземной части сооружения.

Задача проектирования и возведения фундаментов в связи с учетом вышеперечисленных факторов сложна, поэтому необходимо разрабатывать несколько вариантов устройства оснований и фундаментов, а затем на основе технико – экономического их сравнения принимать наиболее рациональное решение.

Новые эффективные виды фундаментов мелкого заложения.

Рисунок 1.26. Фундамент в вытрамбованном котловане

Рисунок 1.27. Фундамент в вытрамбованном котловане с уширенным основанием

Рисунок 1.28. Буробетонный фундамент :1 – колонна; 2 – арматурный каркас; 3 — фундамент

Рисунок 1.29. Щелевой фундамент: 1 – стакан; 2 – подколонник; 3 – плитная часть; 4- бетонные пластины

Рисунок 1.30. Фундамент с анкерами: 1- фундамент; 2 – арматурный каркас; 3 — анкер

Рисунок 1.31.Фундаменты с пустотообразователями 1 – фундамент; 2 – пустообразователи

Рисунок 1.32. Фундамент с наклонной подошвой для зданий с железобетонными рамами

Рисунок 1.33. Узел опирания рамы и панели на фундамент с наклонной подошвой

Рисунок 1.34. Фундамент на промежуточной подготовке: 1-эпюра контактных давлений; 2- рыхлый песок; 3- бетон; 4- фундамент

Ссылка на основную публикацию
Adblock
detector